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Resonant diffraction radiation from an ultrarelativistic particle moving close to a tilted grating

A. P. Potylitsyn, P. V. Karatae¥,and G. A. Naumenko
Institute for Nuclear Physics, Tomsk Polytechnic University, 634050, prospekt Lenina 2A, Tomsk, Russia
(Received 5 August 1999

A simple model for calculating the diffraction radiation characteristics from an ultrarelativistic charged
particle moving close to a tilted ideally conducting strip is developed. Resonant diffraction radRB&) is
treated as a superposition of the radiation fields for periodically spaced strips. The RDR characteristics have
been calculated as a function of the number of grating elements, tilted angle, and initial particle energy. An
analogy with both the resonant transition radiation in an absorbing medium and the parametric x-ray radiation
is noted.

PACS numbes): 41.60—m

I. INTRODUCTION for a tilted strip as the difference between the radiation fields
of two semi-infinite planes, one restricted by edge 1 and the
To date, a number of different approachds-4] have other by edge Zsee Fig. 1,
been employed to treat the characteristics of electromagnetic R R R
radiation from a relativistic particle moving parallel to and Estrip=Eup~ Edown- (1)
above a diffraction gratingthe so-called Smith-Purcell ef-
fect (SPB]. The interest in this type of radiation is related
both to the possibility of using the SPE to generate intens
radiation in the millimeter and submillimeter regidrg and
to implementing it in nondestructive beam diagnos&s In a
both cases we have to estimate the influence of such factors a;=h-— EsinG)O, 2
as transverse beam size, angular beam divergence, mono-
chromaticity, etc., on the radiation characteristics. and for edge 2,
In principle, the beam divergence effects in a plane that is
parallel to the grating can be estimated using the results ob-
tained in[4]. However, there is no simple algorithm to cal-
culate the radiation characteristics from a particle passin _ _ _ _
above a tilted grating, i.e., for a nonzero angle between th%'efeh is the spacing between the particle trajectory and the
particle trajectory and the main plane of the grating. middle line of the stripa is the strip width, andd is the
One of the authors of the present paper has developed &tip tilt angle. Thus, taking into account the phase shift we
approach based on description of the SPE as a resonant difave
fraction radiationfRDR) [2], which is suitable for calculating

For convenience, we express the impact paramétes
ghortest distance between the particle trajectory and the plane
edge for edge 1 in the following way:

a
a;=h+ Esin(ﬁ)o. (3

o L . e - - a o a .
the radiation characteristics for a grating consisting of a Estrip:EDR(h__Sin®0 e"”—EDR(h+—sin®0)e"¢.
number of conducting strips spaced by vacuum gaps. Here, 2 2
we calculate the RDR characteristics of a particle whose tra- (4)

jectory is not parallel to the grating. The influence of geom- |, Eq. (4) the DR field for a semi-infinite ideal screen is

etry on the RDR characteristics is also studied. expressed througﬁDR(ai). The full phase shift () char-
acterizes the phase difference between the waves being

Il. DIFFRACTION RADIATION FROM AN formed in the vicinity of edges 1 and [®]; and it can be
ULTRARELATIVISTIC PARTICLE derived from simple geometrical relations as a quantity
FOR A TILTED STRIP which is proportional to the time difference between the

wave propagation from edge 1 and edgés@e Fig.
To calculate the RDR characteristics for a tilted grating it propag g o&s g-1

is necessary to know the diffraction radiation field from a 2am[cog®,—0,)—cosO,/B]
charged particle moving close to a single tilted strip. The 2¢= N ' ©)
exact solution of the Maxwell equations describing the radia-
tion from a charged particle moving above an inclined semiwhereg is the particle velocity and is the DR wavelength.
infinite ideally conducting screen has long been knd®h  (In this paper use is made of the system of uhitsm=c
Using the latter and the results reported8m, we can obtain  =1.) For the extreme case®{=0° and 90°), the phase
an expression for the diffraction radiatioDR) field strength  shift calculated according to E¢5) coincides with that ob-
tained in[2].
Equation(4) is valid if the following conditions for the

* Author to whom correspondence should be addressed. Electron&trip dimensions are fulfilledyx>>b, yx<<c (see Fig.

address: kpv@npi.tpu.ru 1). Herey is the Lorentz factor of the particle.
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as FIG. 1. Geometry of diffrac-
h tion radiation from a single strip;
¢ h is the impact parametef), is
the observation angle®), is the
strip tilt angle, anda is the strip
a width.

We will consider the radiation characteristics in a coordi- 42y, o
T DR _ 202
nate system where theaxis is directed along the beam and dodQ —exfd — (w/w:) V1+y°05]
the x axis is parallel to and thg axis perpendicular to the @ am
strip edge. As shown ih8], for relativistic particles the ra- 2 _ _
X{05[1+cog®,—0p)](1— cosO,)
+(y 2+ 03)[1-cog0,-0y)]

diation concentrates in the range of angles
X (1+c0s@0)}(y >+ 07){[cog O, —By)

|x|$7’_1 (6)

if y>>1. In this approximation the following expression for ) _2 . .
the DR yield with wavelength. will be true: —c0s0o/B]*+ (v 2+ 07)sifO) . (12

In Eq. (12), we have omitted the terms smaller thary 2

- - 27AX . .
Epr(X+AX)=Epr(X)exg — ——/1+ 7,2@5 ) in the numerator and denominator.
12 Now we shall consider the forward diffraction radiation
N (FDR), i.e., for the angle®,~ y~1<1. Using this approxi-
whereEpg(x) ~ exf —(w/2wc) V1+ ¥°05], andw.=7y/2a;  mation instead of Eq(12) we have
is the DR characteristic energy.

For further calculations we shall use a more symmetrical d®Wpr  « ® 5
expression instead of E¢): deodQ ﬁex T oo 1+y°05
Estrip=Epr(h)[expatig)—exp(—a—ig)], (8 y 24202

X —— — . (13
amsin®, (Y 2+ 0 (y 2+0+07)
Y\

V1+ 9202, 9)

a=

As was noted irf8], in the angular distribution of DR at
0,=0,=0 there is a maximum whose value is proportional

From Eq.(8) we derive the following fomula for the DR 72
spectral-angular density for the strip: '
d®Wpr(0,=00,=0) «a w
dZWstrip _ dZWDRF . (10 dc:dﬂ ! :m ’)’Zex T ol (19
dodQ  dodQ SUP’ ¢

For ©,> v~ 1, using Eq.(12) one can obtain a simpler ex-
d*Wpr pression:

dw dQ

=47?|Epgl?,  Fsyip=4(sintfa+sirte).

dZWDR 63 —
(11) m:ﬁexq—(w/wc)\ﬂ%—yz(@i]{'y ?(1+c0s0)

The expressions obtained are quite similar to the formulas

for the spectral-angular distribution of transition radiation ><[1—cos{y—®0)]+2®§[1—cos®o

(TR) from a foil (see, e.g.[10]). In the case in question, I

Fsuip Characterizes the DR field interference from the two xcog@,—00) [} (v *+05)sin?(0,/2)

strip edges; whereas, for TR, the same multiplier character- XSi(@.— 0. /2)]" L 15
izes the TR field interference from the input and output sur- SIM(®o=0y/2)] % (19
faces of the foil. It follows from Eq. (12) that for the mirror reflection angle

Earlier[9], the spectral-angular density of DR for a semi- (0y=20,) the angular distribution has another maximum
infinite screen was obtained using an ultrarelativistic apiwhich is much the same as Ed4) and can be identified as
proximation. It was shown that the DR is concentrated in theé‘backward diffraction radiation”(BDR) in analogy with the
vicinity of the plane that is perpendicular to the scre@n (  process of transition radiation. The fact that the FDR and
~y Y, BDR intensities coincide in the whole frequency range re-
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= 8 _0 FIG. 3. Geometry of diffraction radiation from a tilted gratirg;
R c 8d is the impact parametes,is the strip widthd is the grating period,
6 - 6 - and @, is the grating tilt angle.
47 49 whereas the next strip field differs from E@.7) in both the
2 2 - phase¢, and the decay factat,
0 T T T T 1 0 i T T ] = _E . —E h .
20 21 22 23 24 25 20 22 24 26 2= B1€Xp(= ao =1 o) = Esurip( )exp(—a0—|q§o),(18)
B0 (degree)
FIG. 2. Orientation dependence for a single strip with the WidthsWhICh can be determined in analogy to E¢fs. and (9):
a=0.1 mm(a), 1 mm(b), 10 mm(c), and a semi-infinite plang). 27Td[cos{®y—®0)—cos®0/,8]
. . . o 0= : (19
sults from using an ideally conducting screen approximation. A
However, it is obvious that the latter approximation is not
valid for o.=w,, wherew, is the plasmon energy of the 2m7dsin®, s
screen material. @=| T V1+y70;. (20
In the range of angle2®,— 0|~y 1, i.e., in the vicin-
ity of the mirror reflection direction, the BDR specfcral- One can write théth strip field in the same way,
angular density also has the form of H43); however, in
this case the angl®, is measured from the mirror reflection - = .
By E=Esnpexd — (k—D(ap+ide)]. (2D

direction (see[8]).

Thus, Eq.(15) is valid when the following conditions are N . N
fquiIIeL:j: q.19 is valid w wing " The resulting field of thé\ strip grating is expressed through

the sum ofN terms
0,>y 1 20-0,>y L. (16)

EGR: El“l‘ Ez"’ <ot Ek
In this case, as follows from Ed15), the DR density is N
abouty? times smaller. R .

Figure 2 shows the dependence of the DR yield on the :Estripgfl exg — (k—=1)(ag+ido)]. (22)

strip tilt angle®, (the so-called orientation dependenéar

the fixed observation angle,=4.5° in the reflection plane Having calculated the squared modulus of E22) we obtain

(©,=0). The calculations have been carried out using Eqse following expression for the DR spectral-angular density
(10—(12) for y=1000,A=0.4 um, anda;=0.1 mm. One ¢, the entire grating:

can see that foyh=asin®, the DR yield is strongly sup-

pressed and the characteristic angular width of the depen- 2 2 _ 2
. . . . -1 . . . d WGR d Wstrlp d

dence is significantly higher thany™*, which is typical for =

DR from a semi-infinite screefsee Fig. 2d)]. The DR in-

tensity at the orientation dependence maximum is also sup-

_ Wpr
dodQ deodQ N dodQ

I:stripFN il (23)

pressed whemyA =a sinQ,, where
N 2 1 CN 2
ll. RESONANT DIFFRACTION RADIATION , -
Fn= exd —(k—1)(ap+i =
FROM A TILTED GRATING N g‘l - Naotido)] 1-C

Let us consider a grating consisting Mfstrips of widtha 24

and periodd tilted at angle®, to the electron momentum
(see Fig. 3. The impact parametéthe distance between the
first strip center and the electron trajectgsee Fig. 1] we

Here C=exp(—ag—Iid¢y).
After simple mathematical transformations, Eg4) may
be written in the following manner:

denote as.
The radiation field being formed near strip 1 of the grating ) )
coincides with Eq(8), F = exd — (N— 1)010]( SiP(N¢o/2) + smh’-(NaO/Z)) .
Sir?(ol2) + sint?( ay/2)

E1=Eguip(h), (17) (25)



7042 A. P. POTYLITSYN, P. V. KARATAEV, AND G. A. NAUMENKO PRE 61

1000.000 400
100.000 =
G 300
g 10.000 g
3 £ 200
3z  1.000 §
2 & 100 -
S D.100

0_
00 01 02 03 04 05 06 07 08 09 10
al/d

0010

0.001

FIG. 6. Dependence of the fir§t), second(2), third (3), and
fourth (4) order maximum intensity on the rat@/d. The initial
FIG. 4. Smith-Purcell effect spectrum. The initial conditions conditions used areéd,=4.5°, ©,=0, ©,=0, h=0.1 mm, y
used are®,=4.5°, ®,=0, ©,=0, a=0.2 mm, d=0.4 mm, h =1000,N=50,A=0.4 pum.
=0.1 mm, y=1000,N=50; k is the diffraction order.

E(eV)

d(cos®,—1/B)

One should notice that the structure of E2f) is identical to )‘sz-
that of a similar expression for the resonant transition radia-
tion from N layers taking into account the radiation absorp-As is seen from the figure, the even orders are absent. This is
tion in every layer. explained by the influence of thfey;, factor, which is equal

First we shall consider a particular case corresponding t@ zero at
the Smith-Purcell geometry®,=0). It is obvious that the
decay factora, determined by Eq(20) is equal to zero, so ¢=mmr, (30
that Eqg.(25) can be rewritten in a well-known form:

(29

wherem is on integefsee Eq(11)].
_sinZ(N¢0/2) Substituting Eq(29) in Eq. (5), we can write Eq(28) in

N (26)  the following form:

 Si(¢l2)
WhenN— o, Eq. (26) transforms into an ordinary func- k= 9m=2m. (32)
tion, a
Fn=27N6(do—2km), (270  Thus, in the case under considerati@n=d/2) the even dif-
) ) _ fraction orders are forbidden. For illustration, Fig. 5 shows
wherek is the diffraction order. the dependence &, on the photon energy calculated for

The presence of thé function is an indication of the the same conditions as in Fig. 4.
existence of monochromatic maxima in the RDR spectrum.  Figure 6 shows the maximum DR yield dependence on
However, the use of thé function for real gratings where the ratioa/d for four radiation orders. As was shown above,
the number of elements is limited is not always justified.for the first diffraction order the intensity reaches its maxi-
Therefore, we shall further use the exact formu25) and  mym value ata/d=0.5, and for the second order atd
(26). =0.25 and 0.75.

Figure 4 depicts the RDR spectral distribution for the | et us consider the case of a tilted grating. One should
Smith-Purcell geometry. The calculation has been carried oi{gte that in the DR spectrum quasimonochromatic peaks can
for a=d/2 when the intensity reaches its maximum valuepe observed at small tilt angles of the grating. For the tilted
[2]. The peak position in the spectrum is determined by the

phase relatiorithe resonance conditipn
do= 2Kk, (28) 0.15 7
which leads to the well-known formula of Smith-Purcell, %; 012 7
©
44 2 0.09
g
3 | © 0.06
2o 0.03
[72]
[T
1 4 0.00 T T T T T T
3 4 5 6 7 8
0 ———T " E (V)
1 2 3 4 5
E (eV) FIG. 7. Diffraction radiation spectrum from a tilted strip. The

initial  conditions used are ®,=4.5°, 0,=0, 0©,=1.9°,
FIG. 5. Dependence ¥, on energy. a=0.2 mm,a;=0.1 mm(see Fig. 1, y=1000.
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single strip the spectrum calculated according to @q) is  observe a first order quasimonochromatic radiation maxi-
shown in Fig. 7. The strip parameters and geometry are inmum with a finite full width at half maximum(FWHM)
dicated in the figure caption. As in the case of a semi-infiniteogether with a continuous background.
screen one can observe an exponentially decreasing spec- The positions of the quasimonochromatic maxima in the
trum. RDR spectrum are determined by the resonance condition
Figure 8 depicts the RDR spectrum from a tilted grating(28) where the¢, phase is taken according to E49). We
calculated at®,=1.9°. Unlike the spectrum from a single will illustrate this fact in the following way. Let us rewrite
strip calculated for the same initial conditions, here one carkq. (25) in the form

1-2 exg —(N—1)ag]cog (N—1)po]t+exd —2(N—1)aq]

N 1—2 exfd — ag)coSdy+exp —2aq) (32)
|
In the extreme case, whel—, instead of Eq.(32) we A similar peak shift of the parametric x-ray radiation
have (PXR) has been registered in an experimgtit]| with a ro-
tating crystalline target. Actually, for both RDR and PXR the
1 peak position in the spectrum is determined by the resonance
Fo= — —— (33 condition only and does not depend on the radiation mecha-
1—2e “ocos¢y+e “*o nism.

. . . . . The PXR studies often measure a so-calledcan, i.e.,
It is apparent that the expression obtained reaches its maXipe gependence of the radiation yield for a fixed observation
mum value when the following conditions are fulfilled: angle and electron energy on the target orientation angle.
Figure 9b) presents this dependence calculated for the RDR.

bo=2km  (cosgp=1). (34 In this case the grating tilt angl@, is varied with respect to
In this case the electron beam.
' A recent experimenrtl2] measured the same dependence
1 for the Smith-Purcell effect for a grating made as a periodi-

= _ (35) cally deformed continuous surface. The authors of that paper
(1—e %0)? obtained a dependence with clear maxima. This dependence
shape is quite close to the one presented in Fig).. 9
At small valuesey< 1, which correspond to small tilt angles ~ Figure 1@a) presents the dependence of the full width at
of the grating,®,<1, from Eq.(35) we have half maximum AE) on the number of grating elements for
the first diffraction order and tilt angl® ,=1° (solid line). It
1 also shows a similar dependence for the SPE, which is well
Fo=—. (36)  approximated by a N dependencédotted ling. As follows
%o from the figure, for®,=1° the resulting curve is well ap-

Thus. pronounced auasimonochromatic maxima. in the D roximated by theC, /N formula whereC,;=1.8. When the
us, p u quast : ! : umber of periods increases, the RDR intensity also in-

spectrum can be observed at grazing incidence angles of t . _ .
particle beam with respect to the grating. For the ar@gle Q(Feases, reaching the 0l93evel for N=70[see Fig. 1(b)].

#0, instead of the Smith-Purcell conditions we have the 0.08 |
following relation between the quasimonochromatic maxi- )
mum position, period, grating tilt angle®,, and observa-
tion angle®: a 0.06 -
©
_ _ 3
)\k:d[cos{®y @l((,) cos®0/,8]' 37 S, 004 AE
3
wherek is an integer. 0.02 -
Figure 9a) shows the dependence of different-order |
maximum positions on the target orientation angle at the
observation angl®,=4.5°. One can see that for negative 0.00 , | . . r
values of@ (i.e., for the geometry where the beam ‘“re- P 3 4 5 6 7 8
flected” by the grating is directed to the opposite side from E (eV)
the detectorthe spectral maxima are shifted to low energy
with respect to the SPE spectrum®{=0). When the tilt FIG. 8. Diffraction radiation spectrum from a tilted grating. The

angle increases, the spectral maxima are shifted to the highitial conditions used are ®,=45°, ©,=0, ©,=1.9°,
energy part. a=0.2 mm,h=0.1 mm(see Fig. 3, y=1000.



A. P. POTYLITSYN, P. V. KARATAEV, AND G. A. NAUMENKO PRE 61

7044
8 0.35
2073 4 (b) : al b
2 16 4 - € 0.30 - g
O 3 s &7 % 0.25 § 60
=1 (5 - B & T
3 12 2 ~— £
2 24 =020 |\ g
(=3 - - = . i
5 8 ! 7o 50154 \\ £
£ X €
& 44 Q Z 010+ N 2 20
0 = >~. =
0 T T T T T T T T 2 0.05 = £
1 0 1 2 3 4 04 -02 00 02 04 0.00 — T 04 T T T
©, (degree) 0, (degree) 0 10 20 30 40 50 60 70 10 20 30 40 50 60 70
YA/ d sin@, i/ dsing,

FIG. 9. (a) Dependence of the fir¢l), second2), third (3), and
fourth (4) order peak positionstf,=4.5°, d=0.4 mm) on the tilt
angle.(b) Dependence of the first DR order yield £ 1233 nm)
on the tilt angle.

FIG. 11. (a) Dependence of the first order FWH{dash-dotted
line) on Ng¢; and the IN¢¢ function (solid line). The initial condi-
tions used are®,=4.5°, 0,=0, 0,=1°, a=0.2 mm, h
=0.1 mm,d=0.4 mm(see Fig. 1, y=1000.(b) Dependence of
the first order maximum intensity oN.¢; calculated for the same

Let us estimate the effective grating lengthe number of
initial conditions.

periodg with which the passing particle field interacts:

SP geometry. It was noticed im] that for angles®y <1
(38 (@4 is the angle between the electron momentum and grat-
ing axis in the horizontal planehe peak shift can be de-
scribed in the following way:

2N
Nett=4 sin@®,"

In the case considerebll, =60, which is quite close to the

grating length, providing a 95% intensity level. 22
When a particle moves close to a grating of limited length A= d_cos®,-18 - E( + H) (40)
(with the number of period), one can derive a similar cosOy k 2
characteristic for the Lorentz factor:
Thus,
_n 4N (39) ANy ©2
Yetf N TH: 2H, (41)

Figure 11 shows the dependencel gf,, on the particle en- . .
ergy. As follows from the figure the sir);1ple estimati@9) is and th_erefor_e the peak broadening related_ to beam diver-
a good characteristic for the RDR process too. gence in horizontal plane can be neglected if
04 1
IV. SUMMARY > <N’ (42)

A simple model for calculating the RDR characteristics
from a tilted grating has been suggested. It has been showihich is generally fulfilled.
that quasimonochromatic maxima appear in the RDR spec- In order to obtain a formula analogous to H¢l) and
trum, and their characteristi¢full width, intensity) are de- characterizing the beam broadening due to the divergence in
termined primarily by the angle between the grating planghe vertical plane, we shall take into account that the obser-

and electron pulse. vation angle
Let us estimate the initial beam divergence effect for the

0,—-0,=0p=const, (43
0.35 14
€ 030 4 . b where the angl® is measured from the grating plane. Let
% 025 - F; 10 us denote the angl®, as®, (O, is the angle between the
E 0'20 | :_"; 5 electron pulse and grating axis in the vertical plarkhen
o 2 for ®,<1 we have
S 0.15 \ ..0-::_) 6
g 0101 5 4 d 1-022
5 0.05 - ® 2 )\kZE COS@D—T . (449
0.00 T R A
0 e .0 0 1020 30 40 %0 0T It follows from Eq. (44) that the SPE peak broadening is
determined by the observation an@le, :
FIG. 10. (a) Dependence of the first order FWHM for the SPE
for (@4=0) (solid line) and®,=1° (dash-dotted lineon the num- AN 02
ber of elements, and dependence oN ldashed ling The initial v v (45)

conditions used ar®,=4.5°, ®,=0, a=0.2 mm, h=0.1 mm, A 4 SirF(G)DIZ)'

d=0.4 mm(see Fig. ], y=1000.(b) Dependence of the first order _ _
maximum intensity on the number of elements calculated for thd=or small observation angle® the peak broadening
same initial conditions. ANy /N can be significant and exceed the “natural” peak
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A (um) A (um) The dependence of the peak position in the RDR spec-
150 300 450 600 750 160 300 450 600 750 trum on the grating tilt angl®, can be used to determine
193 2 * by the electron bunch lengil. In [6,13] the authors suggested
measuring the coherent SPR vyield at different observation
angles. In the wavelength region »f-1, one will observe
conversion from ordinary SPR to coherent SPR, i.e., the ra-
40 1 diation intensity will be changed by approximatély times
(Ng is the number of electrons in a bunch
30 Figure 12a) shows the dependence of the RDR wave-
s 10 15 20 25 w0 3 s 1 15 2 25 % s  lengthon the grating tilt angle for the fixed observation angle
9, (degree) 9, (degree) 0Oy, and a similar dependence for the peak width is pre-

] ] sented in Fig. 1@). The calculations have been carried out
FIG. 12. (a) Dependences of the RDR peak intensity on thefor the following conditions:

grating tilt angle(radiation wavelengthfor y=100, ©,=4.5°,d
=20 mm,a=10 mm.(b) Dependence of the FWHM on the grat- y=100, ©,=4.5°, d=20 mm, a=10 mm.
ing tilt angle (radiation wavelengthfor the same initial conditions.

50

Peak Intensity (arb.un.)
FWHM (%)

10-5

As follows from the figure, in the wavelength region
width 1N. Thus, by changing the SPR peak width for small =0.15-0.8 mm @,=28°—-35°) an almost constant intensity
angles®, , in principle, one can determine the vertical beamof the ordinary RDR is observed. If we measure the RDR

divergence. intensity for an electron bunch with the lendif+~0.5 mm,
From Eq. (45) one can estimate the sensitivity of the then for the grating tilt angles indicated one could research
method: the conversion to the “coherent RDR mode” in detall,
which would allow one to determine both the average bunch
2sin0p/2) length and the profile of electron distribution in a bunch. The
V= T (46)  technique suggested is related to grating rotation for a fixed

detector position, whereas j6,13] it was sugested to move

Since this expression does not depend on the wavelengt € detectpr, which is not alyvays conveniéntparticular, if
investigation of the line shape can be carried out in the opt € detecting system contains a monochromator

tical region. For example, fo®p=2° and N=100, @, Depending_ on t_he bunch Ienglﬂg,_ the region of the .
~3.5x 10 2. The estimation obtained does not dependyon wavelengths investigated can be easily changed by choosing
(if 7',>1) ' a proper grating period and observation angle.

The technique suggested for beam divergence determina-
tion can be used in accelerators witks 100, because, in this
case, the well-known methods based on either transition ra- This work was carried out with partial support by the
diation or synchrotron radiation exhibit a sensitivity con- Russian Basic Research Fu(@rant Nos. 98-02-17994 and
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